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Предисловие

Данное методическое пособие отражает опыт преподавания курса
"Аналитические и численные методы решения уравнений математической
физики" магистрам строительных специальностей. В силу ограничения
курса всего 4 часами лекций и 18 часами практики пособие является
вводным курсом по данной дисциплине. Основным содержанием пособия
являются классификация дифференциальных уравнений в частных
производных (ЧДУ), постановка краевых задач для ЧДУ, аналитический
метод разделения переменных и численный метод конечных разностей.
Предполагается, что студенты уже знакомы с обыкновенными
дифференциальными уравнениями и прошли обучение работе с пакетом
MathCAD.

Данный курс ориентирован больше на практическое решение задач
для ЧДУ. В их решении исключительно важную роль имеют численные
методы, т.к. область применения аналитических методов существенно
уже. В связи с этим обучение студентов должно происходить с
использованием компьютера, и курс написан как "живая" книга на языке
математического пакета MathCAD, в которой студенты могут изменять
числа, писать формулы, видоизменять графики − использовать как уже

готовый инструментарий, созданный автором, так и самостоятельно
использовать всю мощь программы для решения практических задач.
Текст данного пособия является идентичным тексту этого интерфейса, т.е.
пособие является копией мультимедийной программы в среде MathCAD: с
графикой, гиперсылками, анимацией, "игровой" составляющей − что есть

управление визуализацией графики  решений задач для ЧДУ. В пособие
разобраны примеры решения и даны вопросы и задачи для
самостоятельного исследования. 

Автор надеется, что использование созданного им мультимедийного
инструментария будет способствовать более эффективному
практическому обучению решению уравнений математической физики.
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Лекция 1. ЧДУ в физике

1.1. Введение

Множество физических явлений − диффузия, тепловой перенос,

движение жидкости, упругость, электромагнитные волны, квантовое

движение микроскопических частиц и т. д. − описывается
дифференциальными уравнениями (ДУ) в частных производных (далее
ЧДУ), большей частью второго порядка (поэтому далее рассматриваются
только ЧДУ второго порядка), т.е. уравнениями на (неизвестные)
функции, зависящие от нескольких (независимых) переменных, напр. f(t,x).
Наша цель научиться

создавать математические модели физических процессов на языке•
ЧДУ,
и решать их.•

Эти уравнения могут быть классифицированы по трём основным
типам физических процессов или, альтернативно, по типу квадратичной
формы уравнения, для примера, с двумя независимыми переменными t и
x:

волновые ∂2f(t,x)/∂t2 = A∂2f/∂x2 − уравнение

гиперболического типа,

диффузии ∂f(t,x)/∂t = D∂2f/∂x2 − уравнение

параболического типа,

стационарные ∂2f(t,x)/∂x2 = A − уравнение Пуассона,

эллиптического типа.

Для получения единственного решения ЧДУ, именно доопределения
общего решения до частного решения, необходимо определить
достаточное число дополнительных условий: граничных, или краевых, и,
для нестационарной задачи, начальных условий. Их число равно числу
произвольных функций общего решения, что равно сумме порядков

старших производных по каждой независимой переменной ЧДУ.
Произвольные функции решения зависят от n−1 независимых

переменных, поэтому дополнительные условия определяются на
поверхностях размерности n−1 в пространстве независимых переменных

(x1, x2, ..., xn). Существует следующая классификация задач по граничным

(ГУ) и начальным (НУ) условиям:
первого типа: определено значение f на (замкнутой) границе области•
+ возможно дополнительное определение f внутри области, что 
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соответствует заданию определённого режима (граничные условия 
Дирихле);
второго типа: определено значение нормальной производной f на•
(замкнутой) границе области, что соответствует заданию силы
(граничные условия Неймана);
третьего, или смешанного, типа: с комбинацией граничных условий•
двух предыдущих типов, что аналогично заданию условия упругости
(граничные условия Робена);
задача Коши: область определения независимых пространственных•
переменных бесконечна − задаются только начальные условия.

Методы решение задач с ЧДУ отличаются достаточной сложностью.
Аналитические методы имеют существенно меньшее число приложений,
чем численные, и, в общем случае, могут быть заменены последними, но
не наоборот. Овладение численными методами существенно проще, чем
аналитическими. Однако они не обладают общностью и являются
приближёнными, хотя со сколь угодно точностью. Численные методы
изучаются в данном курсе с помощью математической программы
MathCAD. Она обладает довольно ограниченными возможностями для
решения ЧДУ: всего несколькими операторами, к тому же с довольно
ограниченными областями применения. Однако решать задачи с ЧДУ
можно и путем непосредственного программирования пользовательских

алгоритмов − в этом у MathCAD нет ограничений (кроме мощности
вычислений). Изучение численных методов позволяет более осознанно
использовать операторы Mathcad для решения ЧДУ: возникает более
ясное понимание выбора их параметров и получаемых решений.

1.2. Классификация ЧДУ 2-го порядка

Общий вид дифференциального уравнения второго порядка для

функции u(x,y) двух переменных:

a
11
∂2u/∂x2+2a

12
∂2u/∂x∂y+a

22
∂2u/∂y2+b

1
∂u/∂x+b

2
∂u/∂y+cu=f, (1a)

где a11, a12, a22, b1, b2, c и f - константы или функции от x и y, или более

кратко

a11uxx+2a12uxy+a22uyy+b1ux+b2uy+cu=f, (1b)
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где u
xx

=∂2u/∂x2, u
y
=∂u/∂y и т.д.

Уравнения классифицируют по

порядку уравнения − наивысший порядок производных,•
числу переменных − число независимых переменных,•
линейности уравнения − слагаемые уранения содержат неизвестная•
функцию и её производные линейным образом (квазилинейность −
линейность только по высшим производным),

однородности уравнения − правая часть f(x,y)=0,•
типу уравнения − определяется знаком дискриминанта квадратичной•
формы уравнения (по аналогии с кривыми второго порядка) в данной

точке (x
0
,y
0
), D=a

12
2 − a

11
a
22

:

D>0 − гиперболический тип,

D=0 − параболический тип,

D<0 − эллиптический тип.

Пример. Тип уравнения 3uxx+uxy+2uyy+5ux=e−x эллиптический согласно

знаку дискриминанта квадратичной формы D=0.52−3∗2<0.

Задачи.

Определить тип уравнения: 

а) uxx−uyy=0 б) utt=uxx+ux+hu в) uxx+3uyy=sinx

г) u
xx

+u
yy

=f(x,y) д) u
rr
+u

r
/r+uθθ/r

2=f(r,θ)

1.3. Приведение ЧДУ к канонической форме

Для каждого из трёх типов уравнения (1) существует своя наиболее

простая (каноническая) форма. Приведённое к этой форме, уравнение
существенно легче решается: по уже известной, стандартной методике.
Преобразование уравнения (1) к канонической форме осуществляется
соответствующей заменой переменных ξ=ξ(x,y), η=η(x,y). Чтобы найти

ξ=ξ(x,y) и η=η(x,y), нужно выразить производные по старым координатам

(x,y) через производные по новым координатам (ξ,η):

uy=uξξy+uηηy, uxx= uξξξx
2+2uξηξxηx+uηηηx

2+uξξxx+uηηx и т.д.,

подставить их в уравнение (1) − получится уравнение той же формы, но с
новыми коэффициентами:
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a11'uξξ+2a12'uξη+a22'uηη+b1'uξ+b2'uη+cu=f, (1b')

где a11'=a11ξx
2+2a12ξxξy+a22ξy

2 и т.д. (в качестве упражнения

предлагается получить новые коэффициенты aij' и bi' самостоятельно) и

потребовать равенство одного или двух новых коэффициентов (в
зависимости от типа уравнения, см. ниже) нулю, например:

a11'=a11ξx
2+2a12ξxξy+a22ξy

2=0. (2)

Решение ξ(x,y) уравнения (2) ищется как общий интеграл уравнения

a
11

dy2−2a
12

dxdy+a
22

dx2=0, (3a)

являющегося характеристическим для уравнения (1) и распадающегося
на два характеристических уравнения

y
x
=(a

12
+D1/2)/a

11
 и y

x
=(a

12
−D1/2)/a

11
, (3b)

любая из характеристик которых φ(x,y)=c1 и ζ(x,y)=c2, т.е. общие интегралы

(константы решений уравнения (3)), и есть решение уравнения (2), ξ=φ(x,y)

или ξ=ζ(x,y): из условия φ(x,y)=const следует dφ=φxdx+φydy=0 и

yx=dy/dx=−φx/φy (аналогично yx=−ζx/ζy), после подстановки этого

выражения yx в характеристическое уравнение (3a) (заметим, что сейчас yx

является уже решением уравнения (3a)) последнее становится
тождественным уравнению (2).

1.4. Каноническая форма гиперболического

уравнения

Для гиперболического уравнения решения характеристических

уравнений (3b) действительны и различны.  Заменой переменных ξ=φ(x,y),

η=ζ(x,y), где φ(x,y)=c1 и ζ(x,y)=c2 − их общие интегралы, гиперболическое

уравнение приводится к простейшей форме 

uξη=Φ(ξ,η,u,uξ,uη), 

в которой a11'=a22'=0. Вторая каноническая форма гиперболического

уравнения 
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uαα−uββ=Φ1(α,β,u,uα,uβ)

получается из первой заменой переменных α=ξ+η, β=ξ−η, при этом

получается a11'=−a22' и a12'=0.

Пример. Преобразуем гиперболическое уравнение

(n−1)2uxx−y2nuyy=ny2n−1uy к канонической форме по методике, описанной в

разделе 1.3. Его характеристические уравнения (3b)

y
x
=yn/(n−1) и y

x
=−yn/(n−1)

имеют общие интегралы

x+y1−n=const и x−y1−n=const.

Полагаем новые координаты

ξ=x+y1−n и η=x−y1−n.

В этих координатах

a11'=a11ξx
2+2a12ξxξy+a22ξy

2=0, 

a
12

'=a
11
ξ
x
η
x
+a

12
(ξ
x
η
y
+η

x
ξ
y
)+a

22
ξ
y
η
y
=2(n−1)2,

a22'=a11ηx
2+2a12ηxηy+a22ηy

2=0,  

b1'=a11ξxx+2a12ξxy+a22ξyy+b1ξx+b2ξy=0, 

b2'=a11ηxx+2a12ηxy+a22ηyy+b1ηx+b2ηy=0, 

c'=c=0, 
f'=f=0. (4)

Подставляя эти коэффициенты в (1b'), получаем

2(n−1)2uξη=0

и в окончательном виде

uξη=0.

Преобразуем последнее уравнение к координатам

α ξ η β ξ−η
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α=ξ+η, β=ξ−η.

В этих координатах

uξ=uα+uβ, 

uη=uα−uβ,

uξη= uαα−uββ (5)

и уравнение принимает вторую каноническую форму

uαα−uββ=0.

Задачи.

Получить соотношения (1b'), (4) и (5).1.
Привести к 1-й и 2-й каноническим формам уравнение:2.

а) uxx−4uyy+ux=0 б) 3uxx+7uxy+2uyy=0

в) y2u
xx
−x2u

yy
=0 где x>0, y>0 г) u

xx
+u

xy
−2u

yy
−3u

x
−15u

y
+27x=0

д) u
xx
−2sin(x)u

xy
−cos2(x)u

yy
−cos(x)u

y
=0

е) uxx−4uxy−3uyy−2ux+6uy=0.

Привести уравнение uxx+4uxy=0 к новым координатам, решить его,3.

решение выразить в координатах (x,y).

1.5 Каноническая форма параболического

уравнения

Для параболического уравнения решения характеристических

уравнений (3b) одинаковы, т.к. D=0. Заменой переменных ξ=φ(x,y),

η=η(x,y), где φ(x,y)=c − их общий интеграл, η(x,y) − любая функция, не

зависящая линейно от φ(x,y), параболическое уравнение приводится к

простейшей форме

uηη=Φ(ξ,η,u,uξ,uη), 

в которой a11'=a12'=0.

Пример. Преобразуем параболическое уравнение
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y2uxx−2xyuxy+x2uyy=y2ux/x+x2uy/y к канонической форме по методике,

описанной в разделе 1.3. Его единственное характеристическое
уравнение (3b)

yx=−x/y

имеет общий интеграл

x2+y2=const.

Полагаем новую координату

ξ=x2+y2.

В новых координатах, согласно формулам (4),

a
11

'=y2(2x)2−2xy2x2y+x2(2y)2=0,

a12'=y22xηx−xy(2xηy+2yηx)+x22yηy=0

− значит равенство a12'=0 не зависит от выбора новой координаты η(x,y),

поэтому её выбирают линейной независимости от ξ, например η=y,

a22'=a11ηx
2+2a12ηxηy+a22ηy

2=x2,  

b1'=a11ξxx+2a12ξxy+a22ξyy+b1ξx+b2ξy=0, 

b
2
'=a

11
η
xx

+2a
12
η
xy

+a
22
η
yy

+b
1
η
x
+b

2
η
y
=−x2/y,

c'=c=0, 
f'=f=0.

Подставляя эти коэффициенты в (1b'), получаем

uηη=uη/η.

Задачи.
Преобразовать уравнение uxx+2uxy+uyy=0 к канонической форме и1.

решить его.
Привести к канонической форме уравнение:2.

а) uxx+2uxy+uyy+u=2 б) y2uxx+2xyuxy+x2uyy=0

в) y2u
xx
−2xyu

xy
+x2u

yy
−2u

y
=0.
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1.6 Каноническая форма эллиптического уравнения

Для эллиптического уравнения решения характеристических

уравнений (3b) комплексны и сопряженны. Заменой переменных сначала

ψ=φ(x,y), χ=φ*(x,y), где φ(x,y)=c1 и φ*(x,y)=c2 − их общие интегралы,

которые сопряжены, затем ξ=(ψ+χ)/2, η=(ψ−χ)/2i, параболическое

уравнение приводится к простейшей форме

uξξ+uηη=Φ(ξ,η,u,uξ,uη), 

в которой a11'=a22' и a12'=0.

Пример. Преобразуем эллиптическое уравнение

uxx−2sin(x)uxy+(2−cos2(x))uyy=0 к канонической форме по методике,

описанной в разделе 1.3. Его характеристические уравнения (3b) 

yx=−sin(x)+ 1− =−sin(x)+i и yx=−sin(x)− 1− =−sin(x)−i 

имеют комплексно сопряженные общие интегралы

cos(x)−y+ix=const и cos(x)−y−ix=const.

Полагаем промежуточные координаты

ψ=cos(x)−y+ix и χ=cos(x)−y−ix

и новые координаты выражаем через них

ξ=(ψ+χ)/2=cos(x)−y и η=(ψ−χ)/2i=x.

В этих координатах

a11'=a11ξx
2+2a12ξxξy+a22ξy

2=1, 

a12'=a11ξxηx+a12(ξxηy+ηxξy)+a22ξyηy=0,

a22'=a11ηx
2+2a12ηxηy+a22ηy

2=1,  

b1'=a11ξxx+2a12ξxy+a22ξyy+b1ξx+b2ξy=−cos(x), 

b2'=a11ηxx+2a12ηxy+a22ηyy+b1ηx+b2ηy=0, 

c'=c=0, 
f'=f=0.

Подставляя эти коэффициенты в (1b'), получаем
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uξξ+uηη=cos(x)uξ.

Задачи.

Какие уравнения в канонической форме:1.
а) ut=uxx-hu б) uxx+uxy+3u=sin(x) в) uxx+2uyy=0 г) uxx=sin(x)

Привести к канонической форме уравнение:2.

а) y2uxx+x2uyy=0 б) uxx+2uyy+x2ux=exp(-x2/2)

в) (1+x2)2uxx+uyy+2x(1+x2)ux=0 г) (1+x2)uxx+(1+y2)uyy+xux+yuy=0.

Лекция 2. ЧДУ гиперболического типа

2.1. Задачи с ЧДУ гиперболического типа

Простейшее уравнение гиперболического типа − одномерное

волновое уравнение:

utt=c2uxx, (2.1)

где u(x,t) − отклонение от положения равновесия, распространяющееся в
виде волны (любой природы: э-м, вероятность в квантовой механике и
др.) со скоростью c. Для поперечной волны в струне при малых

колебаниях в отсутствие внешних сил уравнение (2.1) получается как
следствие уравнения движения Ньютона, где utt имеет смысл

поперечного ускорения струны и uxx − кривизны струны, с параметрами

задачи c2=T/ρ, где T − сила натяжения (не зависит от времени), ρ −
линейная плотность струны. Для продольных колебаний упругого стержня
вместо T здесь будет модуль Юнга, k. А для звуковых волн (продольные

волны) в газе c2=γp/ρ, где γ, p и ρ −  показатель адиабаты, давление и

плотность среды. В многомерном случае u
xx 

заменяется на ∆u, где ∆=∂2/∂

x2+∂2/∂y2+∂2/∂z2 − оператор Лапласа. Если кривизна ∆u функции u в

данной точке <, или >, или = 0 − что означает, что значение u в этой
точке больше/меньше/равно, чем среднее u в окрестности (в этом

наглядный смысл лапласиана ∆), − то возвращающая сила
направлена вниз/вверх/нулевая.

Для решения задачи на волновые движения с уравнением (2.1) в
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общем случае необходимы начальные и краевыми условиями. Три
основных типа краевых условий формулируются следующим образом:

1. u(0,t)=h1(t) и u(L,t)=h2(t) (задан режим),

2. ux(0,t)=h1(t) и ux(L,t)=h2(t) (заданы силы),

3. ux(0,t)+γ
1
u(0,t)=h1(t) и 

ux(L,t)+γ2u(L,t)=h2(t) (упругое закрепление на границах),

 в области x∈[0,L] и t∈[0,T]. 

2.2. Формула Даламбера

Формула Даламбера

u x t,( )
1

2
f x ct−( ) f x ct+( )⋅+[ ]⋅

1

2c
x ct−

x ct+

zg z( )
⌠

⌡

d⋅+= g (2.2)

является решением задачи Коши для (2.1), с начальными условиями
u(x,0)=f(x) и ut(x,0)=g(x) по бесконечной области x. Эта формула легко

получается непосредственным интегрированием после приведения (2.1) к

первой канонической гиперболической форме − получается общее
решение, содержащее две произвольные функции:

u(x,t)=φ(x−ct)+ψ(x+ct), (2.3)

представляющее собой сумму двух бегущих волн противоположных

направлений, произвольной формы, со скоростью c, − и доопределением

общего решения до частного путём подстановки общего решения в
начальные условия и выражения этих функций через начальные данные
(этот метод неприменим в общем случае ЧДУ). 

Задачи.
Получить формулу Даламбера.1.
Удовлетворяет ли она начальным условиям?2.
Являются ли решением уравнения uξη=0 функции:3.

а) u(ξ,η)=sinη+ξ2 б) u(ξ,η)=1/η+tgξ в) u(ξ,η)=η2+e
Найти решение задачи Коши для (2.1) с начальными условиями4.
u(x,0)=sinx и ut(x,0)=0 (синусоидальный импульс). Интерпретировать

решение графически (в данном курсе для этого предлагается
использовать графику MathCad, руководствуясь примерами в
соответствующих разделах-лабораториях).
Найти решение задачи Коши для (2.1) с начальными условиями5.
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u(x,0)={1, если x=]−1,1[, и 0 иначе}  и ut(x,0)=0 (прямоугольный

импульс). Интерпретировать решение графически.
Найти решение задачи Коши для (2.1) с начальными условиями6.
u(x,0)=0 и ut(x,0)=sinx. Интерпретировать решение графически.

Найти решение задачи Коши для (2.1) с начальными условиями7.

u(x,0)=0 и ut(x,0)=xe−x2. Интерпретировать решение графически.

Найти решение задачи Коши для (2.1) с начальными условиями8.
u(x,0)=x и ut(x,0)=0.

Рассмотрите распространение волны9.

u(x,t)=(4/π)[1+sin(x−ct)+(1/3)sin3(x−ct)+(1/5)sin5(x−ct)]

2.2.1. Лаборатория исследования бегущей волны −
графика и анимация

Задача. Найти решение задачи Коши для ЧДУ (2.1) с начальными

условиями u(x,0)=e−x2 и ut(x,0)=0. Интерпретировать решение графически.

Анимировать волну.

Параметр ЧДУ (2.1): c 1=

Решение звдвчи: U x t,( ) 0.5 exp x c t⋅−( )
2−  exp x c t⋅+( )

2− + ⋅=

Времена "фотографий" волны: i 0 4..= ti 2 i⋅= t1 FRAME=

10 5 0 5 10
0

0.5

1

Рис. 2.1

U x t
0

,( )
U x t

1
,( )

U x t
2

,( )
U x t

3
,( )

U x t
4

,( )

x
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10 5 0 5 10
0

0.5

1

Рис. 2.2

U x t1,( )

x

2.3. Стоячие волны. Метод разделения переменных

Волны в струне с закрепленными концами уже не будут бегущими

из-за вз/д с границами. Они определяются решением (2.1) для  граничных
условий первого рода с h1(t)=h2(t)=0. Эта задача решается методом

разделения переменных, или методом Фурье. Он применяется в задачах
при условиях:

ЧДУ линейны и однородны•
граничные условия линейны и однородны: ux(0,t)+γ1u(0,t)=0 и•

ux(L,t)+γ2u(L,t)=0

Решение ищется в виде u(x,t)=X(x)T(t). Форма профиля такого
решения не зависит от t, в этом смысле решение является простейшим.
После подстановки его в (2.1) получается выражение

X(x)T(t)"=c2X(x)"T(t), или

T(t)"/c2T(t)=X(x)"/X(x)

после разделения переменных, где левая и правая части должны быть
равны константе, например k, потому что x и t независимы, значит и
функции их независимы. В таком случае последнее выражение
перепишется в виде двух простых ОДУ

T(t)"−kc2T(t)=0

X(t)"−kX(t)=0, (2.4)

где k<0, иначе решение (2.4) тривиально, X(x)=0, при граничных условиях

X(0)=X(L)=0, или T(t) неограничено при бесконечном t. При k=−λ2,
получаем следующие решения уравнений (2.4):
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T(t)=Asin(cλt)+Bcos(cλt)

X(t)=Csin(λt)+Dcos(λt),

или решение (2.1):

u(x,t)=[Csin(λx)+Dcos(λx)][Asin(cλt)+Bcos(cλt)], (2.5)

где A, B, C и D − константы интегрирования. Для их определения
используются граничные и начальные условия. 

а) Подстановка (2.5) сначала в граничные условия даёт D=0 и

sin(λL)=0, откуда λn=nπ/L, где n − любое целое число (...−2, −1, 0, 1, 2 ...).

Получается набор частных решений 

un(x,t)=sin(λnx)[ansin(cλnt)+bncos(cλnt)]. 

Каждое из них представляет стоячую волну. Их сумма (по n>0)
 

u(x,t)=Σsin(λnx)[ansin(cλnt)+bncos(cλnt)]  (2.6)

также есть решение (2.1) в силу линейности и однородности уравнения и
граничных условий, где каждое слагаемое есть n-я мода, или гармоника,
колебания. 

б) Потом подстановка (2.6) в начальные условия даёт

Σbnsin(λnx)=f(x)

Σancλnsin(λnx)=g(x), (2.7)

что представляет собой разложения функций в ряд Фурье с
коэффициентами (нужно умножить левые и правые части в (2.7) на

sin(λmx) и проинтегрировать от 0 до L)

an
2

c λn⋅ L⋅
0

L

xg x( ) sin λn x⋅( )
⌠

⌡

d⋅= g

bn
2

L
0

L

xf x( ) sin λn x⋅( )
⌠

⌡

d⋅= f , (2.8)

в силу ортогональности функций sin(nx) с целыми n:

0

L

xsin λn x⋅( ) sin λm x⋅( )⋅
⌠

⌡

d = {0, если n m≠ , и L/2, если n=m}. 
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При нулевой начальной скорости n-гармоника волны

un(x,t)=bnsin(λnx)cos(cλnt) представляет собой отклик системы на

n-гармонику начального возмущения f(x)=Σbnsin(λnx).

Задачи.

Получите выражения (2.8) для коэффициентов an и bn, используя1.

тождество sinαsinβ=(cos(α−β)−cos(α+β))/2.
Найти закон свободных колебаний струны длины L, закрепленной на2.
концах, начальным положением u(x,0)=hx(L−x) и нулевой начальной

скоростью.
Найти гармоники колебаний струны (с закрепленными концами) с3.
начальными условиями u(x,0)=sin(πx/L)+0.5sin(3πx/L) и ut(x,0)=0.

Представить результат графически в разные моменты t. Найти период
волны.
Найти решение для колебаний струны с начальными условиями4.
u(x,0)=0 и ut(x,0)=sin(3πx/L). Представить результат графически в

разные моменты t.
Найти решение для колебаний струны с начальными условиями5.
u(x,0)=sin(3πx/L) и ut(x,0)=(3πc/L)sin(3πx/L).

Найти колебания струны длины L=1, первоначально оттянутой за6.
середину на величину u=h, так что u(x,0)={2hx, если x=[0,0.5], и

2h(1−x), если x=[0.5,1]}.

Решить уравнение utt=c2uxx+bx(x−L) при нулевых начальных и7.

граничных условиях u(0,t)=u(L,t)=0.

Найти затухающие колебания струны, описываемые ЧДУ u
tt
=c2u

xx
−βu

t8.
в области 0<x<L, 0<t<inf и начальными условиями u(x,0)=f(x) и

ut(x,0)=0 в области x=[0,L]. Удовлетворяет ли решение ЧДУ и

граничным условиям?

2.3.1. Лаборатория исследования стоячей волны −
оператор Pdesolve

Задача. Найти решение ЧДУ (2.1) для  колебаний струны u(x,t) с
начальными условиями u(x,0)=sin(πx/L) и ut(x,0)=0. Представить результат

графически в разные моменты t. Анимировать струну.

Параметры задачи: cs 2= L 1= T 1= Nx 30= Nt 30=
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Формулировка
модели в блоке
Given−Pdesolve:

Given ЧДУ НУ ГУ 

ut x t,( ) v x t,( )= u x 0,( ) sin
πx

L









= u 0 t,( ) 0=

vt x t,( ) cs
2

uxx x t,( )⋅= v x 0,( ) 0= u L t,( ) 0=

u

v









Pdesolve
u

v









x,
0

L









, t,
0

T









, Nx, Nt,








=

Времена "фотографий" волны: ns 8= i 0 ns..= ti i
T

ns
⋅= ts

T

30
FRAME⋅=

0 0.5 1

1

0

1

Рис. 2.3

u x t
0

,( )
u x t

1
,( )

u x t
2

,( )
u x t

3
,( )

u x t
4

,( )

x

Исследуйте: 1. Решение в
разрезах u(x,const) и u(const,t),
и на всём пространстве (x,t). 
2. Зависимость решения от
параметров.
3. Связь длины, периода и
скорости волны.
4. Расхождение решения от
аналитического. Какова
зависимость погрешности от
числа узлов?

0 0.25 0.5 0.75 1

0

Рис. 2.4

u x ts,( )

x

Волна в "3D" (в пространстве (x,t,u)): M CreateMesh u 0, L, 0, T,( )=
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Рис. 2.5

M

Информация по оператору Pdesolve.

Встроенная функция Pdesolve для решения ЧДУ применяется для
решения различных гиперболических и параболических
уравнений/системы уравнений (всего двух переменных). 

Pdesolve(u, x, xrange, t, trange, [xpts] , [tpts])) — возвращает скалярную
(для единственного исходного уравнения) или векторную (для системы
уравнений) функцию двух аргументов (x,t), являющуюся решением
дифференциального уравнения (или системы уравнений) в частных
производных. Результирующая функция получается интерполяцией
сеточной функции, вычисляемой согласно разностной схеме. 

 u — явно заданный вектор имен функций (без указания имен аргументов),
подлежащих вычислению. Эти функции, а также граничные условия (в
форме Дирихле или Неймана) должны быть определены пользователем
(как логические отношения, используя панель логических операторов)
перед применением функции Pdesolve в вычислительном блоке после
ключевого слова Given. Если решается не система уравнений в частных
производных, а единственное уравнение, то, соответственно, вектор и
должен содержать только одно имя функции и вырождается в скаляр.
Имя функции не должно содержать ни буквенные, ни численные индексы:
буквенные индексы имеют смысл производных. 

 х — пространственная координата (имя аргумента неизвестной функции). 

 xrange — пространственный интервал, т. е. вектор значений аргумента х
для граничных условий. Этот вектор должен состоять из двух
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действительных чисел (представляющих левую и правую границу
расчетного интервала). 

 t — время (имя аргумента неизвестной функции). 

 trange — расчетная временная область: вектор значений аргумента t,
который должен состоять из двух действительных чисел
(представляющих левую и правую границу расчетного интервала по
времени). 

 xpts — количество пространственных точек дискретизации (может не
указываться явно, в таком случае будет подобрано программой
автоматически). 

 tpts — количество временных слоев, т. е. интервалов дискретизации по
времени (также может не указываться пользователем явно). 

 Помимо этой функции для решения параболических и гиперболических
уравнений можно использовать еще одну встроенную функцию numol.
Она имеет еще большее число аргументов и позволяет управлять
дополнительными параметрами метода сеток. Однако пользоваться ею
намного сложнее, чем функцией Pdesolve. 

Лекция 3. Численное решение
дифференциальных уравнений

3.1. Метод конечных разностей

Аналитическое решение существует лишь для узкого класса

(простейших) ДУ. При решении практических задач используют численные
методы решения (однако для многих задач не существует даже
численных алгоритмов, напр. для магнито-гидродинамики). Из них часто
применяется метод сеток = разностный = конечных разностей. Он
заключаются в том, что дифференциальные уравнения 

(а) заменяют на систему алгебраических уравнений, неизвестные в
которых являются значениями искомых функций дифференциальных
уравнений 

(б) в точках (узлах) ограниченной области пространства независимых
переменных, что называется сетка. 
Это процедура дискретизации − замена непрерывного поля физической
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величины на сетку дискретных значений. Решение системы
алгебраических уравнений − довольно простая процедура, получают

прямыми или итерационными способами. Для разрешимости этой системы
(определённости задачи) число уравнений и неизвестных должно быть
одинаковым. Вследствие дискретизации решение будет приближённым,
сеточным. Возможны разные схемы дискретизации. Возможно также, что
дискретизация не будет адекватной исходной модели, решение может
быть не единственным (в случае нелинейных уравнений). Поэтому
требуются дополнительные исследования адекватности. Алгебраическое
уравнение, заменяющее (аппроксимирующее) дифференциальное −
разностный аналог дифференциального уравнения, − получается из

комбинации разложений искомой функции в ряд Тейлора в соседних узлах
численной решетки. 

3.1.1. Лаборатория программирования − метод Эйлера
для ОДУ

Рассмотрим простейший конечно-разностный метод − метод Эйлера

(также метод касательных) для ОДУ − и создадим его программу
средствами программирования MathCad. 

Алгоритм метода Эйлера для ДУ dy/dx=f(x,y):
Задать начальные условия (x0,y0) в узле 0.1.

Задать приращение ∆x1 и вычислить приращение ∆y1=f(x0,y0) ∆x1 для2.

узла n=1. 

Определить значение (x1,y1): x1=x0+∆x1, y1=y0+∆y1.3.

И т.д. для узлов n=2,3... , до заданных границ x и y. В общем виде4.

yn=yn-1+∆xn f(xn-1,yn-1), где n=1,2..., что представляет разложение

функции y в ряд Тейлора в точке xn-1 с точностью до О(∆x2).

Пример свободного движения тела в поле тяготения. 

Модель (на языке математики, x и y − координаты вдоль

горизонтальной и вертикальной осей, α − угол наклона начальной
скорости к горизонту):

 
2

t
x

d

d

2

0= ,
2

t
y

d

d

2

g−= ,

x 0( ) x0= ,  y 0( ) y0= ,  v 0( ) v0=0 ,  α α0= α0. ДУ более

высокого порядка, чем 1, заменяются на систему ДУ 1-го порядка по
схеме: 
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2
t

x
d

d

2

0= ⇒ 
t
Vx

d

d
0=  и 

t
x

d

d
Vx= .

Тогда система ДУ с дополнительными условиями для нашей модели:

dVx(t)/dt=0 dVy(t)/dt= -g dx/dt=Vx(t) dy/dt=Vy(t)

V(0)=(v0x,v0y) (x(0),y(0))=(x0,y0)

− запишется в матричном виде dY(t)/dt=fY(t,Y), Y(0)=Y0, где

Y

Vx

Vy

x

y















=

Vx

, fY Vx Vy, x, y,( )

0

g−

Vx

Vy















=  и Y0

v0x

v0y

x0

y0

















=

v0x

  − вектора Y с

компонентами из неизвестных функций системы ДУ, fY −  с компонентами
из первых производных неизвестных функций (правые части системы ДУ)

и Y0 −  с компонентами из начальных условий.

Алгоритм рассчёта движения тела методом Эйлера.

Ввод параметра g, начальных значений x(0), y(0), |v0| и угла α: 1.

g 9.8=  м/с^2, x0 0=  м, y0 1000=  м, v0 10.01=  м/с,  α 0deg=   − тогда

вектор начальных условий: Y0

v0 cos α( )⋅

v0 sin α( )⋅

x0

y0

















= .

Формулировка системы ДУ 
t
Y

d

d
fY Vx Vy, x, y,( )=

t
Y

d

d
, т.е. запись её2.

правой части: fY Vx Vy, x, y,( )

0

g−

Vx

Vy















= .

Интервал времени, число узлов − 1, число шагов, время в узлах: 3.

tb 3=  сек, N 100= , i 0 N..= , ti i
tb

N
⋅=

Дискретизация системы ДУ 
t
Y

d

d
fY Vx Vy, x, y,( )=

t
Y

d

d
:4.

Yn=Yn-1+∆t fYn-1, где n=1,2... и ∆t − шаг сетки.

Последовательное вычисление Vx, Vy, x, y (компонентов вектора Y) в5.
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узлах сетки времени.

Программирование алгоритма Эйлера. Используем панель
программирования:

Ввод имени функции, пусть это будет Euler(Y0,fY,tb,N), далее1.

оператор определения и вставить блок (Add line).
Передача начальных значений из Y0 в местную переменную a,2.

которая будет содержать рассчитываемые значения искомых функций
в узлах.
Определение шага по времени, dt.3.
В цикле (for) рассчёт значений функций в i-узлах по формуле, данной4.
в алгоритме, только вместо f(x,y), мы теперь используем вектор
fY(аргументы ak,i) из k компонентов.

В конце блока указать переменную a, чьи значения передаются5.

наружу по выполнении функции; лучше сразу транспонировать: в
столбцах a будут значения Vx, Vy, x, y, а номер строки − номер узла. 

Euler Y0 fY, tb, N,( ) a
0〈 〉

Y0←

dt
tb

N
←

a
i 1+〈 〉

a
i〈 〉

dt fY a
i〈 〉( )

0
a
i〈 〉( )

1
, a

i〈 〉( )
2

, a
i〈 〉( )

3
,





⋅+←

i 0 N 1−..∈for

a
T

=

Решаем поставленную задачу:

Её аналитическое решение:

Y Euler Y0 fY, tb, N,( )=

vx t( ) v0 cos α( )⋅= vy t( ) v0 sin α( )⋅ g t⋅−=

x t( ) x0 v0 cos α( )⋅ t⋅+= y t( ) y0 v0 sin α( )⋅ t⋅+
g t

2⋅
2

−=

Скорость:

Путь:

v Y
0〈 〉( )2 Y

1〈 〉( )2+=

s k( )

1

k

i

Yi 2, Yi 1− 2,−( )2 Yi 3, Yi 1− 3,−( )2+




0.5

∑
=

=
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Энергия:

"Несохранение" 
энергии:

Ek v
2=

δE
2 Y

3〈 〉
y0−( ) g⋅ Ek+

v0
2

1−










100⋅= %
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940
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Рис. 3.1

Y
3〈 〉

y t( )

Y
2〈 〉

x t( ),

Задачи:
Построить графики x(t), y(t)1.
и v(t), y(x) и v(x), путь s(t).
Найти зависимость2.
дальности и времи полёта
от угла.
Сравнить численные3.
решения с аналитическими
по точности. Какова её
зависимость от N?
Существует ли отклонение4.
от закона сохранения
полной механической
энергии энергии?

0 1 2 3
0

20

40

60

Рис. 3.2

s i( )

δEi

v
i

t
i
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3.2. Схемы конечно-разностной аппроксимации.

Процедура дискретизации ЧДУ

Комбинирование разных способов разложения функции в ряд

Тейлора позволяет получить аппроксимацию производных функции в
данной точке выражением из первых членов ряда. Так для f(x) в точке xi

ряд Тейлора имеет вид

f(xi+h)=f(xi)+h fx(xi)+h2fxx(xi)/2!+...

Откуда, пренебрегая слагаемыми более высоких порядков малости по h,

fx(xi)=(f(xi+h)−f(xi))/h−h fxx(ξ))/2, где ξ∈[xi,xi+h], или

fx(xi)≈(f(xi+h)−f(xi))/h (3.1)

− аппроксимация производной  fx(x) в точке xi правой разностью (правая

разностная производная) на двухточечном шаблоне (способ выбора точек
из пространства независимых переменных), которая имеет первый

порядок точности (с точностью до отброшенноного члена h fxx(ξ))/2), или

порядок аппроксимации. Аналогично

fx(xi)≈(f(xi)−f(xi−h))/h (3.2)

− левая разностная производная. Вычитая друг из друга правое и левое

разложения

f(xi+h)=f(xi)+h fx(xi)+h2fxx(xi)/2+h3fxxx(xi)/6+h4fxxxx(xi)/24+...

f(xi−h)=f(xi)−h fx(xi)+h2fxx(xi)/2−h3fxxx(xi)/6+h4fxxxx(xi)/24+...

можно получить центральную разностную производную

fx(xi)≈(f(xi+h)−f(xi−h))/2h (3.3)

на трёхточечном шаблоне, с точностью до слагаемого −h2 f
xxx

(ξ))/6, где ξ∈[

xi−h,xi+h], т.е. второго порядка аппроксимации. А из их суммы можно

получить центральную разностную производную второго порядка

f
xx

(x
i
)≈(f(x

i
+h)−2f(x

i
)+f(x

i
−h))/h2, (3.4)
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которая аппроксимирует f
xx

(x) в точке x
i
 с точностью −h2 f

xxxx
(ξ))/12, где ξ∈[

xi−h,xi+h], т.е. второго порядка аппроксимации.

Пусть требуется найти решение некоторого ЧДУ функции двух
независимых переменных u(x,t) на прямоугольной области пространства

переменных (x,t), где x∈[0,L] и t∈[0,T]. В этой области выбирается сетка

значений (xj,ti) − узлов с номерами (i,j). В простейшем случае узлы сетки

выбираются с постоянным шагом (h и τ): xj=jh, ti=iτ, где i=0..I, j=0..J −

равномерная сетка. Слоем сетки называется множество всех узлов
с одинаковым значением какой-либо переменной. Значения функции
u(xj,ti) в узлах сетки определяются по формулам, представляющим собой

конечно-разностную аппроксимацию ЧДУ и дифференциальных
дополнительных условий данной задачи. С обозначениями типа

uij=u(xj,ti) конечно-разностные аппроксимации на сетке (i,j) производных

функции u(x,t) принимают вид, подобный приведённым выше
конечно-разностным аппроксимациям для f(x):

ux(xj,ti)≈(uij+1−uij)/h

ut(xj,ti)≈(uij−ui-1 j)/τ

ut(xj,ti)≈(ui+1 j−ui-1 j)/2τ

u
xx

(x
j
,t
i
)≈(u

ij+1
−2u

ij
+u

ij-1
)/h2. (3.5)
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Пример сетки в
пространстве (x,t) и
шаблонов для
дискретизации ЧДУ.

3.3. Явная разностная схема решения

гиперболических уравнений

Конечно-разностная аппроксимация одномерного волнового

уравнения (2.1) для струны с параметром c=1

(u
i+1j

−2u
ij
+u

i-1j
)/τ2=(u

ij+1
−2u

ij
+u

ij-1
)/h2, (3.6)

полученное с помощью последнего из "рецептов" (3.5), задаёт явное
выражение для только одного (в сравнение с неявными схемами, см.

раздел 3.4.) неизвестного значения функции ui+1j на i+1-ом временном

слое через значения ui-1j и uij-1, uij и uij+1 в два предыдущие момента

времени, по пятиточечному шаблону (шаблон крест, см. Рис. 3.3):

ui+1j=uij-1τ
2/h2+2uij(1−τ

2/h2)+uij+1τ
2/h2−ui-1j. (3.7)

Задача нахождения всех uij решается послойно, если задано значение

функции в начальный момент времени u(x,0)=f(x) и начальная скорость
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ut(x,0)=g(x): по ним определяются значения функции

u0j=f(xj) (3.8)

в 0-ом и, через аппроксимацию ut(xj,0)=g(xj)≈(u1j−u0j)/τ=(u1j−f(xj))/τ,

значения

u1j=f(xj)+τg(xj) (3.9)

в 1-ом временных слоях, − а также краевые условия

ui0=h1(ti) и uiJ=h2(ti) (3.10)

(например, ui0=uiJ=0 − закрепленные концы). Это явная трёхслойная

разностная схема первого порядка аппроксимации по t (порядок
аппроксимации t формулой (3.9)) и второго по x (порядок аппроксимации x
формулой (3.6)). Она устойчива при условии cτ/h<1. Второй порядок

аппроксимации по t получается при использовании вместо разностного
начального условия первого порядка аппроксимации (3.9) формулы
второго порядка аппроксимации

u1j=f(xj)+τg(xj)+τ
2fxx(xj)/2 (3.11)

для 1-го временного слоя, получающейся из разложения в ряд Тейлора

u(x
j
,0+τ)=u(x

j
,0)+τ u

t
(x
j
,0)+τ2u

tt
(x
j
,0)/2+... , с учётом исходного ЧДУ

utt(xj,0)=uxx(xj,0).

Для случая произвольного постоянного параметра с решение

получается из решения для случая c=1, уменьшая все временные

масштабы в c раз. 

Недостаток метода: при уменьшении шага сетки (с целью увеличения
точности аппроксимации частных производных конечными разностями)
увеличивается число вычислительных шагов и вместе с этим
увеличивается погрешность машинного округления счёта. Погрешность
аппроксимации можно оценить по правилу Рунге: как разность решений с
одним шагом сетки (τ и h) и с половинным (τ/2 и h/2) в совпадающих для

обоих сеток узлах. Процесс счёта производят уменьшая шаг до тех пор,
пока так определяемая погрешность не станет меньше заданой.
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3.3.1. Лаборатория программирования − явная схема

решения волнового уравнения

Алгоритм программы: а) ввод сетки значений переменных x и t, б)

послойно, рекурентно, вычисление значения функции uij в узлах сетки по

формулам (3.7)−(3.11). Программу метода Эйлера в части 3.1.1.

адоптируем для расчётов на области двух переменных.

1. Модель. u
tt
=c

s
2u

xx
,
 
cs 2= , в области x=[0,L 1= ] и t=[0,T 2=  ]

2. Дополнительные условия модели.     НУ                           ГУ

fxx x( )
π
L









2

− sin
πx

L









⋅= ⇐ u(x,0)= f x( ) sin
πx

L









= u(0,t)= h1 t( ) 0=

ut(x,0)= g x( ) 0= u(L,t)= h2 t( ) 0=

3. Сетка для расчётов (с условием устойчивости τ<h).

J 15= h
L

J
= I 120= τ

T

I
=

τ
h

0.25=

4. Программа. Используя дополнительные условия, сначала заполняют
граничные узлы сетки, потом первые два временные слоя, второй слой −
по формуле (3.11), в последующих слоях uij расчитываются рекурсивно по

формуле (3.7). Здесь cs=1.

exHyp

ui 0, h1 i τ⋅( )←

ui J, h2 i τ⋅( )←

i 0 I..∈for

u0 j, f j h⋅( )←

u1 j, f j h⋅( ) τ g j h⋅( )⋅+
τ
2

2
fxx j h⋅( )⋅+←

j 1 J 1−..∈for

ui 1+ j,
τ
h









2

ui j 1−, ui j 1+,+( )⋅ 2 1
τ
h









2

−








⋅ ui j,⋅+ ui 1− j,−←

j 1 J 1−..∈for

i 1 I 1−..∈for

u
T

=
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5. Анализ результатов. u exHyp=

Ввод сетки (xj,ti) для вывода,

время "фотографий"
масштабируется с cs:

ns 8= i 0 ns..= τs
τ
cs

= ti i
T

ns cs⋅
⋅=

si u
round t

i
τs÷( )〈 〉

= j 0 J..= xj j h⋅=

0 0.5 1

1

0

1

Рис. 3.4
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Исследуйте: 1. Решение в
разрезах u(x,const) и u(const,t),
и на всём пространстве (x,t). 
2. Зависимость решения от
параметров.
3. Расхождение решений
численных от аналитических
и/или полученных с помощью
Pdesolve. Какова зависимость
погрешности от числа узлов?

Задачи.

Постройте блок-схему численного решения гиперболической задачи.1.
Найти решение для колебаний струны с начальными условиями2.
u(x,0)=x(π−x) и ut(x,0)=0. Представить результат графически в разные

моменты t. Сравнить численное решение с аналитическим в узлах
слоя, близкого к начальному, и в узлах слоя, ближе к верхней границе
T. 
Найти решение для колебаний струны с начальными условиями3.
u(x,0)=0 и ut(x,0)=πsin(πx/L).

Найти решение для колебаний струны с начальными условиями4.
u(x,0)=sin(3πx/L) и ut(x,0)=(3πc/L)sin(3πx/L).

Найти решение для колебаний струны с начальными условиями5.
u(x,0)=0.2(x/L)(1-x/L)sin(πx/L) и ut(x,0)=0.

Найти решение гиперболической задачи utt=uxx+ext,  0<x<L, 0<t<0.5, с6.

граничными условиями u(0,t)=arctg(t) и u(L,t)=1, с начальными

условиями u(x,0)=x/L и ut(x,0)=(x/L)0.5.
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3.4. Неявная разностная схема решения

гиперболических уравнений

Производная u
xx
 в конечно-разностной аппроксимации (3.6)

одномерного волнового уравнения (2.1) аппроксимирована центральной
разностной производной по i−ому временному слою. Однако, логичнее

использовать также информацию в прилежащих слоях, i−1 и i+1:

(u
i+1j

−2u
ij
+u

i-1j
)/τ2 = {λ(u

i+1 j+1
−2u

i+1 j
+u

i+1 j-1
) + (1−2λ)(u

ij+1
−2u

ij
+u

ij-1
) +

λ(ui−1j+1−2ui−1 j+ui−1 j-1)}/h
2,

где правая часть представляет собой среднее взвешенное по трём слоям.
Отсюда получаются следующие неявные уравнения:

ui+1 j+1−(2+1/λr)ui+1 j+ui+1 j-1=

(2−1/λ)(uij+1−2uij+uij-1) − (ui−1j+1−2ui−1j+ui−1 j-1) − (2uij − ui-1j)/λr, (3.12)

относительно сразу трёх неизвестных ui+1 j-1, ui+1 j и ui+1 j+1 на i+1-ом

временном слое, где j=1..J-1 и  r=τ2/h2. Всего J-1 алгебраических

линейных уравнений с J-1 неизвестными, которые однозначно находятся
известными способами решения систем алгебраических линейных
уравнений. В первых двух временных слоях, uij находится по формулам

(3.8), (3.9) или (3.11). В остальных слоях решение определяется по
девятиточечному шаблону через значения в два предыдущие момента
времени. Это неявная трёхслойная разностная схема. При условии
λ=[0.25,0.5] схема абсолютно устойчива и имеет второй порядок

аппроксимации по t и x. Для λ=[0,0.25[ схема устойчива лишь при условии

с2r < 1/(1-4λ).
Достоинством неявных схем, по сравнению с явными, является

бо'льшая точность даже при большом шаге, хотя объём вычислений
возрастает.

3.4.1. Лаборатория программирования − неявная схема

решения волнового уравнения

Алгоритм программы аналогичен разделу 3.3.1., с формулой (3.12)

вместо (3.7) и сответствующими дополнениями в программе exHyp.
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1. Модель. u
tt
=c

s
2u

xx
,
 
cs 2= , в области x=[0,L 1= ] и t=[0,T 2=  ]

2. Дополнительные условия модели.     НУ                           ГУ

fxx x( )
π
L









2

− sin
πx

L









⋅= ⇐ u(x,0)= f x( ) sin
πx

L









= u(0,t)= h1 t( ) 0=

ut(x,0)= g x( ) 0= u(L,t)= h2 t( ) 0=

3. Сетка для расчётов и параметр λ (с условием устойчивости r(1-4λ) < 1).

J 15= h
L

J
= I 15= τ

T

I
= r

τ
h









2

= λ 0.2= r 1 4 λ⋅−( )⋅ 0.8=

4. Программа. Используя дополнительные условия, сначала заполняют

граничные узлы сетки, потом первые два временные слоя, второй слой −
по формуле (3.11), затем uij расчитываются послойно по формуле (3.12).

Система J-1 уравнений (3.12) в матричной форме выглядит так:

b

1

0

.

0

1

b

1

.

0

0

1
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.

.

0

0
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.

.

.
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











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


ui 1,

ui 2,

ui 3,

.

ui J 1−,



















⋅

d1

d2

d3

.

dJ 1−

















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=

b

1

0

.

0

1
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1

.

0

0
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.
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0

0
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.

.

.
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0
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0

0
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















ui 1,

ui 2,

ui 3,

.

ui J 1−,



















⋅ , 

где b=−(2+1/λr) и dj − правая часть j-го уравнения (3.12). Её можно решить

методом исключения Гаусса, который в данном случае трёхдиагональной
матрицы сводится к методу прогонки с рекуррентными формулами:

uiJ-1=DJ-1, uij-1=−Cj-1uij+Dj-1, j=J-1..2 (обратная прогонка),

где прогоночные коэффициенты:

C1=b−1, Cj=(b−Cj-1)
−1, D1=d1/b, Dj=(dj−Dj-1)/(b−Cj-1), j=2..J-1 (прямая

прогонка). Здесь cs=1.

..∈=
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imHyp

ui 0, h1 i τ⋅( )←

ui J, h2 i τ⋅( )←

i 0 I..∈for

u0 j, f j h⋅( )←

u1 j, f j h⋅( ) τ g j h⋅( )⋅+
τ
2

2
fxx j h⋅( )⋅+←

j 1 J 1−..∈for

a 2 1 λ÷−←

b 2 1 λ r⋅( )÷+ −←

D0 0←

C0 0←

Cj 1 b Cj 1−−( )÷←

j 1 J 1−..∈for

dj a ui j 1+, 2 ui j,⋅− ui j 1−,+( )⋅ 2 ui j,⋅ ui 1− j,−( ) λ r⋅( )÷−←

dj dj ui 1− j 1+, 2 ui 1− j,⋅− ui 1− j 1−,+( )−←

Dj dj Dj 1−−( ) b Cj 1−−( )÷←

j 1 J 1−..∈for

ui 1+ J 1−, DJ 1−←

ui 1+ j, Cj− ui 1+ j 1+,⋅ Dj+←

j J 2− 1..∈for

i 1 I 1−..∈for

u( )
T

=

5. Анализ результатов. u imHyp=

Ввод сетки (xj,ti) для вывода,

время "фотографий"
масштабируется с cs:

ns 8= i 0 ns..= τs
τ
cs

= ti i
T

ns cs⋅
⋅=

si u
round t

i
τs÷( )〈 〉

= j 0 J..= xj j h⋅=
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Исследуйте: 1. Решение в
разрезах u(x,const) и u(const,t),
и на всём пространстве (x,t). 
2. Зависимость решения от
параметров.
3. Расхождение решений
численных от аналитических
и/или полученных с помощью
Pdesolve или exHyp. Какова
зависимость погрешности от
числа узлов и параметра λ?

Лекция 4. ЧДУ параболического типа

4.1. Диффузионные задачи

Простейшее уравнение параболического типа − одномерное

уравнение диффузии или теплопроводности в однородной среде:

u
t
=α2u

xx
,
 
 0<x<L, 0<t<T, (4.1)

где u(x,t) − концентрация примеси или температура, α − параметр

процесса. Для диффузии α2=D/s, где D − коэффициент диффузии, s −
коэффициент скважности, именно доля объёма пустого пространства в

полном объёме. Для теплопроводности α2=k/c
q
ρ, где k − коэффициент

теплопроводности (связи потока тепла через поверхность единичной
площади и производной  температуры вдоль нормали к поверхности

qt=−ku
n
 − закон Фурье), cq − удельная теплоёмкость, ρ −  плотность.

Уравнение (4.1) получается как следствие закона сохранения энергии
(тепла), который для тонкого теплоизолированного (сбоку) стержня с

поперечным сечением S формулируется как: изменение количества

тепла cqρSu∆x на отрезке ∆x за время ∆t равно (поток тепла
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kSux(x+∆x)−kSux(x) через торцы отрезка)∗∆t. Правая часть

уравнения (4.1) может содержать дополнительные слагаемые:
−β(u−u0) − описывает теплообмен через боковую поверхность•

стержня, с коэффициентом β и наружной температурой u0; 

f(x,t) − неоднородным член, описывающий внутренний источник тепла;•
−vux − описывает конвективную диффузию, со скоростью конвекции v.•
Для получения единственного решения (4.1) необходимо описание

начальных 

u(x,0)=f(x), в области x=[0,L],

и краевых условий, в области t=[0,T]:

u(0,t)=h1(t) и u(L,t)=h2(t) − когда задан режим (напр. температура)

ux(0,t)=h1(t) и ux(L,t)=h2(t) − когда задан поток (напр. тепловой поток)

ux(0,t)+γ1u(0,t)=h1(t) и ux(L,t)+γ2u(L,t)=h2(t) − когда заданы условия третьего

рода (напр. температура окружающей среды: в данном случае поток
пропорционален, с одной стороны, производной ux вдоль нормали к

границе и, с другой стороны, разности u(0,t)-h(t)/γ на.границе стержня и в
среде)

4.2. Решение диффузионных задач методом
разделения переменных

Решение задачи на примере первой смешанной гранично-краевой

задачи для ЧДУ (4.1), с граничными условиями h1(t)=h2(t)=0 и начальным

условием u(x,0)=f(x), ищется в виде функции u(x,t)=X(x)T(t). Подстановкой
её в (4.1) получается выражение

X(x)T(t)'=α2X(x)"T(t), или T(t)'/α2T(t)=X(x)"/X(x),

или, в силу независимости левой и правой частей равенства и,
следовательно, равенства их некоторой константе k,

T(t)'−kα2T(t)=0

X(t)"−kX(t)=0, (4.2)

где k<0, иначе решение (4.2) тривиально, X(x)=0, при граничных условиях

X(0)=X(L)=0, или T(t) неограничено при бесконечном t. При k=−λ2,
получаем следующие решения уравнений (4.2):
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получаем следующие решения уравнений (4.2):

T(t)=Aexp(−λ2α2t)
X(t)=Bsin(λt)+Ccos(λt),

или решение уравнения (4.1):

u(x,t)=exp(−λ2α2t)[Asin(λt)+Bcos(λt)], (4.3)

где A, B и C − константы интегрирования. Для их определения
используются граничные и начальные условия. Подстановка (4.3) в
граничные условия даёт

B=0 и sin(λL)=0, откуда λn=nπ/L, 

где n − любое целое число. Получается набор частных решений:

un(x,t)=anexp(−λn
2α2t)sin(λnx). 

Их сумма (по n>0: решения с n<0 отличаются только знаком)

u(x,t)=Σanexp(−λn
2α2t)sin(λnx), (4.4)

также есть решение (4.1) в силу линейности и однородности уравнения и
граничных условий. Подстановка (4.4) в начальное условие даёт
разложение функции f(x) в ряд Фурье

Σansin(λnx)=f(x),

чьи коэффициенты равны, как известно,

am
2

L
0

L

xf x( ) sin λm x⋅( )
⌠

⌡

d⋅= λm ,

в силу ортогональности функций sin(nx) с целыми n:

0

L

xsin λn x⋅( ) sin λm x⋅( )⋅
⌠

⌡

d ={0, если n m≠ , и L/2, если n=m}. 

N-гармоника решения un(x,t)=anexp(−λn
2α2t)sin(λnx) представляет собой

отклик системы на n-гармонику начального распределения

f(x)=Σansin(λnx). При больших t, в силу стремления экспоненты к нулю,

решение стремится к первому слагаемому − полуволне синусоиды.

Задачи.
Показать, что функция (4.3) с произвольными постоянными является1.
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Показать, что функция (4.3) с произвольными постоянными является1.
решением уравнения (4.1).

Показать, что 

0

L

xsin λn x⋅( ) sin λm x⋅( )⋅
⌠

⌡

d ={0, если n m≠ , и L/2, если2.

n=m}. 
Разложить в ряд Фурье по синусам функцию f(x)=1 на отрезке [0,1] и3.
построить график первых членов разложения.
Используя решение задачи 3 найти решение первой4.
начально-краевую задачу (4.1) с начальным условием f(x)=1 на
отрезке [0,L] и с граничными условиями h1(t)=h2(t)=0 на отрезке

времени ]0,T].
Найти решение задачи (4.1) с граничными условиями h1(t)=h2(t)=0 и5.

начальным условием f(x)=sin(2πx/L)+sin(4πx/L)/3+sin(6πx/L)/5. 

Решить задачу 5 с начальным условием f(x)=x−x2 на отрезке [0,1].6.
Решить первую начально-краевую задачу (4.1) с начальным условием7.

f(x)=4x(1−x) на отрезке [0,1] и с граничными условиями h1(t)=h2(t)=0 на

отрезке времени [0,0.01].

4.2.1. Лаборатория исследования теплопроводности с
помощью Pdesolve

Задача. Найти решение первой начально-краевой задачи для ЧДУ (4.1) с

начальным условием u(z,0)=sin(πz/L) и граничными u(0,t)=u(L,t)=0 с
помощью Pdesolve. Представить результат графически в разные
моменты t. Анимировать поведение температуры.

Параметры задачи:
α 1= L 1= T 0.1= Nz 30= Nt 90=

Формулировка
модели в блоке
Given−Pdesolve:

Given ЧДУ НУ ГУ 

ut z t,( ) α
2

uzz z t,( )⋅= u z 0,( ) sin
πz

L









= u 0 t,( ) 0=

u L t,( ) 0=

u Pdesolve u z,
0

L









, t,
0

T









, Nz, Nt,








=

Времена "фотографий" волны:

ns 4= i 0 ns..= ti i
T

ns
⋅= ts

T

30
FRAME⋅=
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Исследуйте: 1. Решение в
разрезах пространства
переменных t=const и z=const и
на плоскости (z,t). 
2. Зависимость решения от
параметров.
3. Отличие от аналитического
решения методом разделения
переменных. С какой
гармоники различие заметно?
4. Какова зависимость
погрешности от числа узлов и
от соотношения шагов по
обеим переменным?
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Рис. 4.2

u z ts,( )

z

Температура в "3D" (в пространстве (z,t,u)): M CreateMesh u 0, L, 0, T,( )=
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Рис. 4.3

M

4.3. Явная разностная схема решения

параболических уравнений

Пример. Задача теплопроводности в стержне с нулевой начальной

температурой, с заданной температурой на одном конце и с
теплообменом на втором − третья смешанная задача:

u
t
=α2u

xx
,
 
 0<x<L, 0<t<T, α=1,

u(x,0)=f(x) в области x=[0,L],
u(0,t)=g1(t) и ux(L,t)=−γ2(u(L,t)−g2(t)),

где g2(t) − температура среды и γ2 − отношение коэффициентов

теплообмена и теплопроводности.
Разностной аппроксимацией ЧДУ (4.1) на сетке (xj,ti) является

выражение

(u
i+1j

−u
ij
)/τ=(u

ij+1
−2u

ij
+u

ij-1
)/h2,

откуда явное выражение значения функции ui+1j на i+1−м временном слое
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ui+1j=uij-1τ/h
2+uij(1−2τ/h2)+uij+1τ/h

2 (4.5)

получается через известные значения uij в предыдущий момент времени

по четырёхточечному шаблону (см. Рис. 3.3). Сеточные выражения
начального и левого граничного условий:

u0j=f(xj) и ui0=g1(ti). (4.6)

Разностной аппроксимацией правого дифференциального граничного
условия является выражение

ux(L,t)≈(uiJ−uiJ-1)/h=−γ2(uiJ−g2(ti)),

откуда правое граничное значение функции на сетке:

uiJ=(uiJ-1+hγ2g2(ti))/(1+hγ2), (4.7)

где J=max(j). Это явная двухслойная разностная схема первого порядка

аппроксимации по t и второго по x. Она устойчива при условии α2τ/h2<1/2.

Оптимально для минимизации погрешности расчёта соотношение

α2τ/h2=1/6.

Для случая произвольного постоянного параметра α решение
получается из решения для случая α=1, уменьшая все временные

масштабы в α2 раз.

4.3.1. Лаборатория программирования − явная схема
решения уравнения теплопроводности

Алгоритм решения диффузионной задачи с граничными условиями
третьего типа: задаётся сетка значений переменных x и t и послойно,
рекурентно, вычисляются значения функции uij в узлах сетки по формулам

(4.5)-(4.7).

1. Модель. u
t
=α2u

xx, 
α 1= , в области x=[0,L 1= ] и t=[0,T 0.4=  ]

2. Дополнительные условия модели.       НУ                           ГУ

u(x,0)= f x( ) 0= u(0,t)= g1 t( ) 0=

ux(L,t)=−γ2(u(L,t)−g2(t)) 

g2 t( ) 1=      γ2 1=
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3. Сетка для расчётов (с условием устойчивости τ/h2<1/2).

I 6000= τ
T

I
= J 20= h

L

J
= 2 τ⋅

1

h









2

⋅ 0.053=

4. Программа.  Адоптируем  программу exHyp для волнового уравнения.
Используя дополнительные условия, сначала заполняют левый
граничный слой сетки и температуру окружающей среды на правой
границе сетки, потом первый временной слой (i=0), затем рекурсивно
расчитываются uij в последующих слоях, по формулам (4.5) для j=[1,J-1] и

(4.7) для j=J. Здесь α=1.

exPar

ui 0, g1 i τ⋅( )←

Texi g2 i τ⋅( )←

i 0 I..∈for

u0 j, f j h⋅( )←

j 1 J..∈for

ui 1+ j,
τ

h
2

ui j 1−, ui j 1+,+( )⋅ 1
2τ

h
2

−








ui j,⋅+←

j 1 J 1−..∈for

ui 1+ J, ui 1+ J 1−, h γ2⋅ Texi 1+⋅+( ) 1 h γ2⋅+( )÷←

i 0 I 1−..∈for

u
T

=

5. Анализ результатов. u exPar=

Ввод сетки (xj,ti) для вывода,

время "фотографий"

масштабируется с α2:

ns 4= i 0 ns..= τs
τ

α
2

= ti i
T

ns α
2

⋅
⋅=

si u
round t

i
τs÷( )〈 〉

= j 0 J..= xj j h⋅=
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Исследуйте: 1. Решение в
разрезах u(x,const) и u(const,t),
и на всём пространстве (x,t). 
2. Зависимость решения от
параметров.
3. Расхождение решений
численных от аналитических
и/или полученных с помощью
Pdesolve. Какова зависимость
погрешности от числа узлов?

Задачи.

Постройте блок-схему численного решения параболической задачи.1.
Найти решение первой смешанной задачи (4.1) с граничными2.
условиями h1(t)=h2(t)=0 и начальным условием f(x)=sin(πx/L).

Представить результат графически в разные моменты t. Сравнить
численное решение с аналитическим в узлах слоя, близкого к
начальному, и в узлах слоя, ближе к верхней границе T. 
Решить задачу 2 с правым граничным условием ux(L,t)=-γ2(u(L,t)-h2(t))3.

при γ2=1 и h2(t)=1.

Решить задачу u
t
=α2u

xx
+sin(πx),

 
 0<x<L, 0<t<T, с граничными4.

условиями h1(t)=h2(t)=0 и начальным условием f(x)=sin(3πx/L). Как

выглядит решение на бесконечности?

Лекция 5. ЧДУ эллиптического типа

5.1. Эллиптические задачи

ЧДУ эллиптического типа описывают стационарные явления или

пространственную часть в решении с разделяющимися переменными:
потенциальное течение идеальной жидкости, стационарное
распределение тепла, стационарное распределение электрических и
магнитных полей. Типичное уравнение этого типа − уравнение Пуассона:

∆ ρ Ω
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∆u=ρ, на области Ω (5.1)

где ρ − функция пространственных переменных, называемая источником

поля (непрерывного континуума) величины u, ∆ − оператор Лапласа. Если

ρ=0, то (5.1) называется уравнением Лапласа. Система координат

выбирается в зависимости от симметрии задачи (граничных условий).
Лапласиан имеет вид:

∆u=uxx+uyy+uzz − в декартовой системе координат (x,y,z)•

∆u=(rur)r/r+uφφ/r
2+uzz − в цилиндрической системе координат (r,φ,z)•

∆u=(r2ur)r/r
2+(sin(θ)uθ)θ/r

2sin(θ)+uφφ/r
2sin2(θ) − в сферической системе•

координат (r,θ,φ).
Задачи для (5.1) только краевые, с условиями:

первого рода (задача Дирихле) − u|Γ=h(x,y), (x,y)∈Γ, где Γ −•

(замкнутая) граница области переменных Ω, плюс, возможно,

дополнительное определение u внутри области Ω
второго рода (задача Неймана) − ∂u/∂n|Γ=h(x,y), где n − нормаль к Γ•

третьего рода (задача Робена) − γu|Γ+∂u/∂n|Γ=h(x,y) •

5.2. Решение задачи Дирихле методом разделения
переменных

Пример. Первая граничная задача для уравнения Лапласа на круге
радиуса L в полярных координатах имеет вид:

u
rr
+u

r
/r+u

φφ
/r2=0, u(L,φ)=h(φ), r∈]0,L[, φ∈[0,2π[. (5,2)

Решение задачи ищется в виде функции u(r,φ)=R(r)Φ(φ). Подстановкой её
в (5.2) получается выражение

R(r)''Φ(φ)+R(r)'Φ(φ)/r+R(r)Φ(φ)''/r2=0, или

(r2R(r)''+rR(r)')/R(r)=−Φ(φ)''/Φ(φ),

или, в силу независимости левой и правой частей равенства и,
следовательно, равенства их некоторой константе k,

r2R(r)''+rR(r)'−kR(r)=0   (уравнение Эйлера)

Φ(φ)''+kΦ(φ)=0   (гармоническое уравнение), (5.3)

где k>0, иначе решение Φ(φ) не периодическое (при k<0), или решение
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R(r)=a+ln(r) становится  бесконечным (при k=0). При k=λ2, получаем
решения уравнений (5.3):

R(r)=Arλ+Βr-λ,
Φ(φ)=Csin(λφ)+Dcos(λφ),

где A, B, C и D − константы интегрирования. Константа B равна нулю из

требования конечности решения при r стремящемся к 0. λ=0, 1, 2 ... из

условия, что период функции Φ(φ) равен 2π. Получается набор частных

решений un(r,φ)=rn(ancos(nφ)+bnsin(nφ)). Их сумма (по n>=0)

u(r,φ)=Σrn(ancos(nφ)+bnsin(nφ)), (5.4)

также есть решение (5.2) в силу линейности и однородности уравнения.

Подстановка (5.4) в граничное условие даёт разложение функции h(φ) в
ряд

ΣLn(ancos(nφ)+bnsin(nφ))=h(φ),

чьи коэффициенты определяются как коэффициенты ряда Фурье:

an
1

L
n π⋅ 0

2π

φh φ( ) cos n φ⋅( )⌠

⌡

d⋅= , bn
1

L
n π⋅ 0

2π

φh φ( ) sin n φ⋅( )⌠

⌡

d⋅= ,

используя свойство ортогональности функций sin(nφ) и cos(nφ) с целыми
n:

0

2π

xsin n x⋅( ) sin m x⋅( )⋅
⌠

⌡

d ={0, если n m≠ , и π, если n=m}.

Компоненты, n-гармоники, решения un(r,φ)=(r/L)n(ancos(nφ)+bnsin(nφ))

представляют собой отклик системы на соответствующие n-гармоники

граничного распределения hn(φ)=(ancos(nφ)+bnsin(nφ)). Это свойство

позволяет быстро находить решения задачи (5.2) через разложение
граничной функции в ряд Фурье.

Задачи.

Найти решение задачи (5.2) на r∈]0,1[ для граничной функции:1.

а) h(φ)=1+sinφ+cos(φ)/2, б) h(φ)=2,

в)  h(φ)=sinφ, г)  h(φ)=cos(3φ).
Проверить удовлетворяет ли решение уравнению Лапласа.
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Найти решение задачи (5.2) на r∈]0,2[ для граничной функции2.

а) h(φ)=sinφ, б) h(φ)=sin(2φ).
Представить решение графически.

Найти решение задачи (5.2) на r∈]0,1[ для граничной функции3.

h(φ)={sinφ, если φ∈[0,π[, и 0, если φ∈[π,2π[. Представить решение

графически.

5.3. Численное решение эллиптических задач

методом сеток

Пример. Задача для уравнения Лапласа в квадрате:

uxx+uyy=0, x∈[0,X], y∈[0,Y], (5.5)

с граничным условием u(x,y)=h(x,y) на периметре прямоугольной области
(x,y). Разностной аппроксимацией ЧДУ (5.5) на сетке (xj,yi) является

выражение

(uij+1−2uij+uij-1)/hx
2+(ui+1j−2uij+ui-1j)/hy

2=0, или

(hy
2/hx

2)(uij+1+uij-1)+ui+1j+ui-1j−2(1+hy
2/hx

2)uij=0, или (5.6)

uij=(uij+1+uij-1+ui+1j+ui-1j)/4, если hy=hx=h, (5.6')

где uij получается как среднее по четырём соседним значениям uij, по

пятиточечному шаблону (см. Рис. 3.3). Сеточные выражения граничных
условий:

u0j=h(xj,0), ui0=h(0,yi), uIj=h(xj,Y), uiJ=h(X,yi).

Эта разностная схема второго порядка аппроксимации является
абсолютно устойчивой. Все внутренние значения uij находятся

одновременно, в отличие от решения эволюционных задач с ЧДУ

гиперболического или параболического типа, итерационными методами:
простой итерации (Либманна) − на первом шаге итерации внутренним

uij присваивается среднее всех граничных uij, на последующих шагах

внутренние uij рассчитываются по формуле (5.6'), используя соседние uij

предыдущего шага;
метод Зейделя − в отличие от метода Либмана на последующих

после первого шагах итерации для расчёта uij используются соседние uij,
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обновлённые на данном шаге итерации, при построчном или по столбцам
счёте.     

Задачи.
Постройте блок-схему численного решения задачи (5.5).1.
Выполнить две итерации методом Либмана для задачи (5.5) с X=Y=1,2.
шагом решётки h=1/3 (сетка с четырьмя внутренними точками) и
граничной функцией h(x,y)={0 на верхней и боковых сторонах
квадрата, sin(πx) на нижней стороне}.
Найти решение задачи (5.5) для X=Y=1, шага решётки h=1/3 (сетка с3.
четырьмя внутренними точками) и граничной функции h(x,y)={0 на
верхней и боковых сторонах квадрата, sin(πx) на нижней стороне}.

(Записать систему алгебраических разностных уравнений в матричной
форме и решить). Результат сравнить с результатом задачи 1.
Выписать систему разностных уравнений для задачи Дирихле в4.

квадрате:.uxx+uyy=f(x,y), x∈[0,1], y∈[0,1], u(x,y)=h(x,y) на периметре

прямоугольной области (x,y).
Решить задачу 3 для f(x,y)=0 и условия Неймана: u(x,y)=0 на верхней,5.
нижней и левой сторонах квадрата, ux(1,y)=1 на правой стороне.

5.3.1. Лаборатория исследования потенциального поля −
операторы multigrid и relax

Задача. Найти потенциал двумерного электростатического поля от
системы зарядов в квадратной области с граничными условиями Дирихле,
используя операторы MathCad для решения уравнения Пуассона. 

1. Модель. uxx+uyy=−ρ/ε0 в области x=[0,X 1= ] и y=[0,Y 1=  ], где

ε0 8.85 10
12−⋅= ф/м.

Распределение заряда задано
дискретно матрицей: строки (сверху
вниз) − координаты x, y, z, заряд (в

единицах qe=1.602 10-19 Кл),

столбцы − номер заряда

Q

0

0

0

0

0

0

0

0

0

0

0

0

.45

.5

0

1

.55

.5

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0















=

2. Дополнительные условия модели.                          ГУ

u|Γ=0, где Γ − периметр области (x,y),

где определена задача

3. Сетка для расчётов и параметры. J 64= h
X

J
= ncycle 2=

..∈=
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src

ρ i j, 0←

j 0 J..∈for

i 0 J..∈for

nc cols Q( ) 1−←

i round
Q0 k,

h









←

j round
Q1 k,

h









←

ρ i j,

Q3 k,

h
2

← 0 i< J<( ) 0 j< J<( )if

k 0 nc..∈for

ρ

=
Определение плотности
заряда ρ в ячейках с

координатами из
матрицы Q:

4. Программа выбирается в
соответствие с заданными
граничными условиями −
multigrid. Решение φ
получается в единицах qe/ε0 В.

ρ src−= φ multigrid ρ ncycle,( )=

5. Анализ результатов. ns 4= k 0 ns..= xk round k J⋅ ns÷( )=
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Ввод сетки (i,j) для вывода
срезов поля.

i 0 J..= yi i=

0 20 40 60 80
0

0.5

1

1.5

2

Рис. 5.1
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x
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x
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〈 〉

φ

x
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〈 〉

φ

x
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〈 〉

φ

x
4

〈 〉

y

Исследуйте: 1. Решение в
разрезах пространства
переменных x=const и y=const
и на плоскости (x,y). 
2. Зависимость решения от
параметров.

Поле в "3D" (в пространстве (x,y,φ)):

Рис. 5.2

φ

Информация по операторам multigrid и relax.

Встроенные функции multigrid и relax применяются для решения
эллиптических ЧДУ (всего двух независимых переменных). 

а) multigrid(ρ,ncycle) − используется для нулевых граничных условий.

ρ −
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Здесь ρ − матрица значений функции источника в узлах квадратной

решётки (напр. ρ=−ρ
i,j
/ε
0 

для электрического поля), с 2n+1 количеством

строк/столбцов, ncycle − параметр алгоритма, обычно 2.
б) relax(M1,M2,M3,M4,M5,ρ,φ_bound,Ω) − используется для ненулевых

граничных условий. Здесь M1, M2, M3, M4, M5 − квадратные матрицы

коэффициентов разностной схемы, M5 соответствует центральному члену,
т.е. M5 = −4 для разностной схемы (5.6'), ρ − матрица функции источника,

φ_bound − матрица значений φ, граничных и начального приближения

внутри области, Ω − параметр алгоритма в интервале [0-1]. Например,

для уравнения (φ
i+1,j

+φ
i-1,j

+φ
i,j+1

+φ
i,j-1

−4φ
i,j

)/h2=−ρ
i,j

/ε
0

M1
i,j

=1/h2, M2=M1, M3=M1, M4=M1, M5=−4M1, ρ=−ρ
i,j
/ε
0
.
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